CS 237: Probability in Computing

Wayne Snyder
Computer Science Department
Boston University

Lecture 10:

- Introduction to Random Variables

Random Experiments and RandomVariables

A Random Experiment is a process that produces uncertain outcomes from a well-defined sample space.

Random
Process

Random Experiments and RandomVariables

A Random Experiment is a process that produces uncertain outcomes from a well-defined sample space.

RandomVariables

In order to formalize this notion, the notion of a Random Variable has been developed. A Random Variable X is a function from a sample space S into the reals:

$$
X: S \rightarrow \mathcal{R}
$$

Now when an outcome is requested, the sample point is translated into a real number:

$$
S=\operatorname{Domain}(X)
$$

$$
\mathrm{R}_{\mathrm{x}}==_{\text {def }} \operatorname{Range}(\mathrm{X})
$$

RandomVariables

In order to formalize this notion, the notion of a Random Variable has been developed. A Random Variable X is a function from a sample space S into the reals:

$$
X: S \rightarrow \mathcal{R}
$$

Now when an outcome is requested, the sample point is translated into a real number:

$$
S=\operatorname{Domain}(X)
$$

X

$$
\mathrm{R}_{\mathrm{x}}==_{\text {def }} \operatorname{Range}(\mathrm{X})
$$

RandomVariables

This may seem awkward, but it helps to explain the difference between random experiments whose literal outcomes are not numbers, but which are translated into numbers for clarity.

Example: X = "the number of heads which appear when two fair coins are flipped."

$$
X
$$

RandomVariables

This may seem awkward, but it helps to explain the difference between random experiments whose literal outcomes are not numbers, but which are translated into numbers for clarity.

Example: X = "the number of heads which appear when two fair coins are flipped.

RandomVariables

In general, in this class we will call the possible outputs R_{x}, since this the symbol used in your textbook, although you could just think of it as the sample space from which the outputs are drawn.

$$
X
$$

RandomVariables

In general, in this class we will call the possible outputs R_{x}, since this the symbol used in your textbook, although you could just think of it as the sample space from which the outputs are drawn.

Discrete vs Continuous RandomVariables

A random variable X is called discrete if R_{x} is finite or countably infinite:
Example of finite random variable:
$X=$ "the number of dots showing after rolling two dice"

$$
R_{X}=\{2,3,4,5,6,7,8,9,10,11,12\}
$$

Example of countably infinite random variable:

$$
\begin{aligned}
& Y=\text { "the number of flips of a coin until a head appears" } \\
& R_{Y}=\{1,2,3, \ldots\}
\end{aligned}
$$

A random variable is called continuous if $R x$ is uncountable. Example:
$Z=$ "the distance of a thrown dart from the center of a circular target of 1 meter radius"

$$
R_{z}=\left[\begin{array}{lll}
0.0 & . . & 1.0
\end{array}\right)
$$

Probability Mass Function of a Discerete RandomVariable

A random variable X is called discrete if R_{x} is finite or countably infinite;
In this case the Probability Function will be given an new and improved name, it will be called the Probability Mass Function (PMF) and referred to by f_{x} :

Example of finite random variable:
$X=$ "the number of dots showing after rolling two dice"
$R_{X}=\{2,3,4,5,6,7,8,9,10,11,12\}$
$f_{\mathrm{X}}=\{1 / 32,2 / 32,3 / 32,4 / 32,5 / 32,6 / 32,5 / 32,4 / 32,3 / 32,2 / 32,1 / 32\}$

Discrete RandomVariables: Probability Distributions

The Probability Mass Function (PMF) of a discrete random variable X is a function from the range of X into \mathcal{R} :

$$
f_{X}: R_{X} \rightarrow[0 . .1]
$$

such that
(i) $\forall a \in R_{x} \quad f_{X}(a) \geq 0$
(ii)

$$
\sum_{a \in R_{x}} f_{X}(a)=1.0
$$

If there is no possibility of confusion we will write f instead of f_{X}.

Discrete RandomVariables: Probability Distributions

To specify a random variable precisely, you need to give the range R_{X} and the Probability Mass Function f_{X}.
Examples:
$\mathrm{X}=$ "The number of dots showing on a thrown die"

$$
\begin{aligned}
& R_{X}=\{1,2,3,4,5,6\} \\
& f_{X}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

$\mathrm{Y}=$ "The number of tosses of a fair coin until a head appears"

$$
\begin{aligned}
R_{Y} & =\{1,2,3, \ldots\} \\
f_{Y} & =\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\}
\end{aligned}
$$

Discrete RandomVariables: Probability Distributions

How does this relate to our first definition of a probability space, events, probability function, etc., etc. ??

Probability Space
Random Variable X

Sample Space
\boldsymbol{R}_{X}

Event

Probability Function

Subset of real numbers (with some restrictions).

Probability Distribution f_{X}

For continuous random variables there are additional conditions about events having to be the countable sum of intervals on the real number line.

Discrete RandomVariables: Probability Distributions

We will emphasize going forward the distributions of random variables, using graphical representations (as in HW 01) to help our intuitions.

Example:
$\mathrm{Y}=$ "The number of tosses of a fair coin until a head appears"

$$
\begin{aligned}
R_{Y} & =\{1,2,3, \ldots\} \\
f_{Y} & =\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\}
\end{aligned}
$$

Discrete RandomVariables: Notations

Notation:

$$
\begin{aligned}
& P(X=k)=_{d e f} P_{X}(k) \\
& P(X \neq k)={ }_{d e f} 1.0-P_{X}(k) \\
& P(X \leq k)={ }_{d e f} \sum_{a \leq k} P_{X}(a)
\end{aligned}
$$

$$
P(j \leq X \leq k)={ }_{d e f} \sum_{j \leq a \leq k} P_{X}(a)
$$

$$
\begin{array}{rlr}
P(Y=4) & =\frac{1}{16} & R_{Y}=\{1,2,3, \ldots\} \\
P(Y<4) & =\frac{7}{8} & P_{Y}=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\} \\
P(2 \leq Y \leq 4) & =\frac{7}{16} &
\end{array}
$$

Functions of Discrete RandomVariables

New random variables can be created by functions or expressions involving old random variables. But you have to be careful!

Example: $\mathrm{X}=$ "the number of dots on a thrown die"

$$
\begin{aligned}
& R_{X}=\{1,2,3,4,5,6\} \\
& f_{X}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

Let $\mathrm{Y}=\mathrm{X}+10$

$$
\begin{gathered}
R_{Y}=\{11,12,13,14,15,16\} \\
f_{Y}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{gathered}
$$

Probability Distribution for X

Probability Distribution for $\mathrm{Y}=\mathrm{X}+10$

Functions of Discrete RandomVariables

Let $\mathrm{Y}=2$ * X

$$
\begin{aligned}
R_{Y} & =\{2,4,6,8,10,12\} \\
f_{Y} & =\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

Let $Y=2^{X}$

$$
\begin{gathered}
R_{Y}=\{2,4,8,16,32,64\} \\
f_{Y}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{gathered}
$$

Probability Distribution for $Y=2 * * X$

Functions of Discrete RandomVariables

Why did I say you have to be careful? Two main reasons...

One, the function of a random variable may combine outcomes...
Example: Let $\mathrm{Y}=\mathrm{X}-3$ and let $\mathrm{Z}=|\mathrm{X}-3|$

$$
\begin{aligned}
& R_{Y}=\{-2,-1,0,1,2,3\} \\
& P_{Y}=\left\{\frac{1}{6} ; \frac{1}{6}, \frac{1}{6}, \frac{1}{6} ; \frac{1}{6}, \frac{1}{6}\right\} \\
& R_{Z}=\{0,1,2,3,\} \\
& P_{Z}=\left\{\frac{1}{6} ; \frac{2}{6}, \frac{2}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

Discrete RandomVariables

Notation:

$$
\begin{aligned}
& P(X=k)==_{\text {def }} P_{X}(k) \\
& P(X \neq k)==_{\text {def }} 1.0-P_{X}(k) \\
& P(X \leq k)={ }_{d e f} \sum_{a \leq k} P_{X}(a)
\end{aligned}
$$

$$
P(j \leq X \leq k)={ }_{d e f} \sum_{j \leq a \leq k} P_{X}(a)
$$

$$
\begin{array}{rlr}
P(Y=4) & =\frac{1}{16} & R_{Y}=\{1,2,3, \ldots\} \\
P(Y<4) & =\frac{7}{8} & P_{Y}=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\} \\
P(2 \leq Y \leq 4) & =\frac{7}{16} &
\end{array}
$$

Functions of Discrete RandomVariables

New random variables can be created by functions or expressions involving old random variables. But you have to be careful!

Example: $\mathrm{X}=$ "the number of dots on a thrown die"

$$
\begin{aligned}
& R_{X}=\{1,2,3,4,5,6\} \\
& f_{X}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

Let $\mathrm{Y}=\mathrm{X}+10$

$$
\begin{gathered}
R_{Y}=\{11,12,13,14,15,16\} \\
f_{Y}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{gathered}
$$

Probability Distribution for X

Probability Distribution for $\mathrm{Y}=\mathrm{X}+10$

Functions of Discrete RandomVariables

Let $\mathrm{Y}=2$ * X

$$
\begin{aligned}
R_{Y} & =\{2,4,6,8,10,12\} \\
f_{Y} & =\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

Let $Y=2^{X}$

$$
\begin{gathered}
R_{Y}=\{2,4,8,16,32,64\} \\
f_{Y}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{gathered}
$$

Probability Distribution for $Y=2 * * X$

Functions of Discrete RandomVariables

Why did I say you have to be careful? Two main reasons...

One, the function of a random variable may combine outcomes...
Example: Let $\mathrm{Y}^{\prime}=\mathrm{X}-3$ and let $\mathrm{Y}=|\mathrm{X}-3|$

$$
\begin{aligned}
R_{Y^{\prime}} & =\{-2,-1,0,1,2,3\} \\
f_{Y^{\prime}} & =\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& R_{Y}=\{0,1,2,3\} \\
& f_{Y}=\left\{\frac{1}{6}, \frac{2}{6} ; \frac{2}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

$$
R_{X}=\{1,2,3,4,5,6\}
$$

Functions of Discrete RandomVariables

$$
f_{X}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
$$

Two, you have to be careful when a random variable is used more than once, since each occurrence refers to a potentially different random outcome!

Let $\mathrm{Y}=2$ * X (twice the dots showing on a thrown die)

$$
\begin{aligned}
R_{Y} & =\{2,4,6,8,10,12\} \\
f_{Y} & =\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

Let $Y=X+X \quad$ (sum of the dots showing on two thrown dice)

$$
\begin{gathered}
R_{Y}=\{2,3,4,5,6,7,8,9,10,11,12\} \\
f_{Y}=\left\{\frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \frac{4}{36}, \frac{5}{36}, \frac{6}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}, \frac{1}{36}\right\}
\end{gathered}
$$

Independence and Conditional RandomVariables

We will now use random variables to describe probability experiments, and all the ideas we have studied up to this point will be cast in terms of random variables. Instead of events, we have RVs returning real numbers. There is not much new to learn except to use the new notation.

Independence
Two random variables X and Y are independent iff and only if

$$
\forall x, y \in R_{X}, P(X=j, Y=k)=P(X=j) \cdot P(Y=k)
$$

$$
P(A \cap B)=P(A) * P(B)
$$

Conditional Random Variables

$$
P(X=j \mid Y=k)=\frac{P(X=j, Y=k)}{P(Y=k)}
$$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

